 M $\mathcal{A T H S}$ Specímen copy

INDEX

Chapter - $1 \quad \mathcal{N} u m b e r$ Systems.
Chapter-2 Polynomíals.
Chapter - 3 Coordinate Geometry.
Chapter-4 Linear Equation in Iwo Variables.
Chapter-5 Introduction To Euclid's Geometry.
Chapter - 6 Lines and Angles.
Chapter - 7 Triangles.
Chapter-15 Probability.

CHAPTER - 06

1. Basic Terms and Definitions

2. Intersecting Lines and Non-intersecting Lines
3. Pairs of Angles
4. Parallel Lines and a Transversal
5. Lines Parallel to the same Line
6. Angle Sum Property of a Triangle

Point - We often represent a point by a fine dot made with a fine sharpened pencil on a piece of paper.

Line - A line is completely known if we are given any two distinct points. Line AB is
represented by as AB . A line or a straight line extends indefinitely in both the directions.

Line segment - A part (or portion) of a line with two end points is called a line segment.

A

B
Ray - A part of line with one end point is called a ray.It usually denotes the direction of line

Collinear points - If three or more points lie on the same line, they are called collinear points, otherwise they are called non-collinear points.

Angle - An angle is the union of two non-collinear rays with a common initial point.

Types of Angles -

Acute angle - An acute angle measure between 0° and 90°

Right angle - A right angle is exactly equal to 90°

Obtuse angle - An angle greater than 90° but less than 180°
Straight angle - A straight angle is equal to 180°
Reflex angle - An angle which is greater than 180° but less than 360° is called a reflex angle.
Complementary angles - Two angles whose sum is 90° are called complementary angles. Let one angle be x , then its complementary angle be $\left(90_{\circ_{-}} x\right)$.

Supplementary angle - Two angles whose sum is 180° are called supplementary angles. Let one angle be x , then its supplementary angle be $\left(180^{\circ} \quad x\right)$.

Adjacent angles -Two angles are Adjacent when they have a common side and a common vertex (corner point) and don't overlap..

Linear pair - A linear pair of angles is formed when two lines intersect. Two angles are said to be linear if they are adjacent angles formed by two intersecting lines. The measure of a straight angle is 180 degrees, so a linear pair of angles must add up to 180 degrees

Vertically opposite angles - Vertically opposite angles are formed when two lines intersect each other at a point. Vertically opposite angles are always equal.

TRANSVERSAL - A line which intersects two or more given lines at distinct points, is called a transversal of the given line.
(i) Corresponding angles
(ii) Alternate interior angles

Alternate exterior angles
(iii) Interior angles on the same side of the transversal.

- If a transversal intersects two parallel lines, then
(i) Each pair of corresponding angles is equal.
(ii) Each pair of alternate interior angles is equal.
(iii) Each pair of interior angle on the same side of the transversal is supplementary.
- If a transversal interacts two lines such that, either
(iv) any one pair of corresponding angles is equal, or
(v) any one pair of alternate interior angles is equal or
(vi) Any one pair of interior angles on the same side of the transversal is supplementary, then the lines are parallel.
- Lines which are parallel to a given line are parallel to each other.
- The sum of the three angles of a triangle is 180
- The sum of all angles round a point is equal to 360°.
- If a side of a triangle is produced, the exterior angle so formed is equal to the sum of the two interior opposite angles.
- If two parallel lines are intersected by a transversal, the bisectors of any pair of alternate interior angles are parallel and vice-versa.
- If two parallel lines are intersected by a transversal, then bisectors of any two corresponding angles are parallel and vice-versa.
- If a line is perpendicular to one of the given parallel lines, then it is also perpendicular to the other line.

1. In Fig. 6.13, lines AB and CD intersect at O . If $\angle \mathrm{AOC}+\angle \mathrm{BOE}=70^{\circ}$ and $\angle \mathrm{BOD}=40^{\circ}$, find $\angle \mathrm{BOE}_{\text {and reflex }} \angle \mathrm{COE}$.

Fig. 6.13
Ans. We are given that $\angle A O C+\angle B O E=70^{\circ}$ and $\angle B O D=40^{\circ}$.
We need to find $\angle B O E$ and reflex $\angle C O E$.
From the given figure, we can conclude that $\angle A O C \angle C O, E$ and $\angle B O E$ form a linear pair.

We know that sum of the angles of a linear pair is
180°
$\angle A O C+\angle C O E+\angle B O E=180^{\circ}$
$\therefore \angle A O C+\angle B O E+\angle C O E=180^{\circ}$
$\Rightarrow 70^{\circ}+\angle C O E=180^{\circ}$
$\Rightarrow \angle C O E=180^{\circ}-70^{\circ}$
$=110^{\circ}$.
Reflex $\angle C O E=360^{\circ}-\angle C O E$
$=360^{\circ}-110^{\circ}$
$=250^{\circ}$.
$\angle A O C=\angle B O D$ (Vertically opposite angles), or
$\angle B O D+\angle B O E=70^{\circ}$.

But, we are given that $\angle B O D=40^{\circ}$.
$40^{\circ}+\angle B O E=70^{\circ}$
$\angle B O E=70^{\circ}-40^{\circ}$
$=30^{\circ}$.
Therefore, we can conclude that Reflex $\angle C O E=250^{\circ}$ and $\angle B O E=30^{\circ}$.
2. In Fig. 6.14, lines $X Y$ and $M N$ intersect at 0 . If $\angle P O Y=90^{\circ}$ and $a: b=2: 3$, find c.

Fle. 6.14

Ans. We are given that $\angle P O Y=90^{\circ}$ and $a: b=2: 3$.
We need find the value of c in the given figure.

Let a be equal to $2 x$ and b be equal to $3 x$.
$\because a+b=90^{\circ} \Rightarrow 2 x+3 x=90^{\circ} \Rightarrow 5 x=90^{\circ}$
$\Rightarrow x=18^{\circ}$
Therefore $b=3 \times 18^{\circ}=54^{\circ}$
Now $b+c=180^{\circ}$ [Linear pair]
$\Rightarrow 54^{\circ}+c=180^{\circ}$
$\Rightarrow c=180^{\circ}-54^{\circ}=126^{\circ}$
3. In the given figure, $\angle P Q R=\angle P R Q$, then prove that $\angle P Q S=\angle P R T$.

Ans. We need to prove that $\angle P Q S=\angle P R T$
We are given that $\angle P Q R=\angle P R Q$.
From the given figure, we can conclude that $\angle P Q S$ and $\angle P Q R$, and $\angle P R S$ and $\angle P R T$ form a linear pair.
We know that sum of the angles of a linear pair is 180°
$\therefore \angle P Q S+\angle P Q R=180^{\circ}$, and (i)
$\angle P R Q+\angle P R T=180^{\circ}$.
From equations (i) and (ii), we can conclude that

$$
\angle P Q S+\angle P Q R=\angle P R Q+\angle P R T
$$

But, $\angle P Q R=\angle P R Q$.
$\therefore \angle P Q S=\angle P R T$.
Therefore, the desired result is proved.
4. In Fig. 6.16, if $x+y=w+z$, then prove that $A O B$ is a line.

Ans. We need to prove that $A O B$ is a line.
We are given that $x+y=w+z$.
We know that the sum of all the angles around a fixed point is 360°

Thus, we can conclude that $\angle A O C+\angle B O C+\angle A O D+\angle B O D=360^{\circ}$, or $y+x+z+w=360^{\circ}$.
But, $x+y=w+z$ (Given).
$2(y+x)=360^{\circ}$.
$y+x=180^{\circ}$.
From the given figure, we can conclude that y and x form a linear pair.

We know that if a ray stands on a straight line, then the sum of the angles of linear pair formed by the ray with respect to the line is 180°.

Therefore, we can conclude that $A O B$ is a line.

4. In the given figure, $P O Q$ is a line. Ray $O R$ is perpendicular to line $P Q . O S$ is another ray lying

 between rays OP and OR. Prove that$$
\angle R O S=\frac{1}{2}(\angle Q O S-\angle P O S)
$$

Ans. We need to prove that

$$
\angle R O S=\frac{1}{2}(\angle Q O S-\angle P O S)
$$

We are given that $O R$ is perpendicular to $P Q$, or

$$
\angle Q O R=90^{\circ} .
$$

From the given figure, we can conclude that $\angle P O R$ and $\angle Q O R_{\text {form a linear pair. }}$ We know that sum of the angles of a linear pair is 180°.
, or

$\angle P O R=90^{\circ}$.

From the figure, we can conclude that $\angle P O R=\angle P O S+\angle R O S$.
$\Rightarrow \angle P O S+\angle R O S=90^{\circ}$, or
$\angle R O S=90^{\circ}-\angle P O S$
From the given figure, we can conclude that $\angle Q O S$ and $\angle P O S$ form a linear pair.
We know that sum of the angles of a linear pair is 180°.

$$
\angle Q O S+\angle P O S=180^{\circ}, \text { or }
$$

$$
\frac{1}{2}(\angle Q O S+\angle P O S)=90^{\circ}
$$

Substitute (ii) in (i), to get

$$
\angle R O S=\frac{1}{2}(\angle Q O S+\angle P O S)-\angle P O S
$$

$=\frac{1}{2}(\angle Q O S-\angle P O S)$.
Therefore, the desired result is proved.
(i) It is given that $\angle X Y Z=64^{\circ}$ and $X Y$ is produced to point P. Draw a figure from the given information. If ray YQ bisects $\angle Z Y P$, find $\angle X Y Q$ and refl ex $\angle Q Y P$

Ans. We are given that $\angle X Y Z=64^{\circ}, X Y$ is produced to P and $Y Q$ bisects $\angle Z Y P$.
We can conclude the given below figure for the given situation:

We need to find $\angle X Y Q$ and reflex $\angle Q Y P$.
From the given figure, we can conclude that $\angle X Y Z$ and $\angle Z Y P$ form a linear pair.
We know that sum of the angles of a linear pair is

But
$\Rightarrow 64^{\circ}+\angle Z Y P=180^{\circ}$
$\Rightarrow \angle Z Y P=116^{\circ}$.
Ray $Y Q$ bisects $\quad \angle Z Y P$, or
$\angle Q Y Z=\angle Q Y P=\frac{116^{\circ}}{2}=58^{\circ}$.
$\angle X Y Q=\angle Q Y Z+\angle X Y Z$
$=58^{\circ}+64^{\circ}=122^{\circ}$.
Reflex $\angle Q Y P=360^{\circ}-\angle Q Y P$
$=360^{\circ}-58^{\circ}$
$=302^{\circ}$.
Therefore, we can conclude that $\angle X Y Q=122^{\circ}$ and Reflex $\angle Q Y P=302^{\circ}$

Chapter-6
 Lines and Angles (Ex. 6.2)

1. In the given figure, find the values of x and y and then show that $A B \| C D$.

Ans. We need to find the value of x and y in the figure given below and then prove that $A B \| C D$. From the figure, we can conclude that $y=130^{\circ}$ (Vertically opposite angles), and x and 50° form a pair of linear pair.

We know that the sum of linear pair of angles is
$x+50^{\circ}=180^{\circ}$
$x=130^{\circ}$.
$x=y=130^{\circ}$.
From the figure, we can conclude that x and y form a pair of alternate interior angles corresponding to the lines $A B$ and $C D$.

Therefore, we can conclude that $x=130^{\circ}, y=130^{\circ}$ and $A B \| C D$
2. In the given figure, if $A B\|C D, C D\| E F$ and $y: z=3: 7$, find x.

We need to find the value of x in the figure given below.

We know that lines parallel to the same line are also parallel to each other.
We can conclude that $A B\|C D\| E F$.
Let Angles be $y=3 a$ and $z=7 a$
We know that angles on same side of a transversal are supplementary.
$x=z$ (Alternate interior angles)
$z+y=180^{\circ}$, or
$7 a+3 a=180^{\circ}$
$\Rightarrow 10 a=180^{\circ}$
$a=18^{\circ}$.
$z=7 a=126^{\circ}$
$y=3 a=54^{\circ}$.
Now $x+54^{\circ}=180^{\circ}$
$x=126^{\circ}$.
Therefore, we can conclude that $x=126^{\circ}$.
3. In the given figure, If $\mathbf{A B} \| \mathbf{C D}, E F \perp C D$ and $\angle G E D=126^{\circ}$, find $\angle A G E, \angle G E F$ and $\angle F G E$.

Ans. We are given that $A B \| C D, E F \perp C D$ and $\angle G E D=126^{\circ}$.
We need to find the value of $\angle A G E, \angle G E F$ and $\angle F G E$ in the figure given below.
$\angle G E D=126^{\circ}$
$\angle G E D=\angle F E D+\angle G E F$.
But, $\angle F E D=90^{\circ}$.
$126^{\circ}=90^{\circ}+\angle G E F$
$\Rightarrow \angle G E F=36^{\circ}$.
$\because \angle A G E=\angle G E D$ (Alternate angles)
$\therefore \angle A G E=126^{\circ}$.
From the given figure, we can conclude that $\angle F E D$ and $\angle F E C$ form a linear pair.
We know that sum of the angles of a linear pair is 180°.
$\angle F E D+\angle F E C=180^{\circ}$
$\Rightarrow 90^{\circ}+\angle F E C=180^{\circ}$
$\Rightarrow \angle F E C=90^{\circ}$
$\angle F E C=\angle G E F+\angle G E C$
$\therefore 90^{\circ}=36^{\circ}+\angle G E C$
$\Rightarrow \angle G E C=54^{\circ}$
$\angle G E C=\angle F G E=54^{\circ}$ (Alternate interior angles)
Therefore, we can conclude that $\angle A G E=126^{\circ}, \angle G E F=36^{\circ}$ and $\angle F G E=54^{\circ}$.
4. In the given figure, if $\mathbf{P Q} \| \mathbf{S T}, \angle P Q R=110^{\circ}$ and $\angle R S T=130^{\circ}$, find $\angle Q R S$.
[Hint: Draw a line parallel to ST through point R.]

Ans. We are given that $P Q \| S T, \quad \angle P Q R=110^{\circ}$ and $\angle R S T=130^{\circ}$.
We need to find the value of $\angle Q R S$ in the figure.

We need to draw a line $R X$ that is parallel to the line $S T$, to get
Thus, we have $S T \| R X$.
We know that lines parallel to the same line are also parallel to each other.
We can conclude that $P Q\|S T\| R X$.
(Alternate interior angles)
${ }^{5} 0 \angle Q R X=110^{\circ}$.
We know that angles on same side of a transversal are supplementary.
$\angle R S T+\angle S R X=180^{\circ} \Rightarrow 130^{\circ}+\angle S R X=180^{\circ}$
$\Rightarrow \angle S R X=180^{\circ}-130^{\circ}=50^{\circ}$.

From the figure, we can conclude that
$\angle Q R X=\angle S R X+\angle Q R S \Rightarrow 110^{\circ}=50^{\circ}+\angle Q R S$
$\Rightarrow \angle Q R S=60^{\circ}$.
Therefore, we can conclude that $\angle Q R S=60^{\circ}$.
5. In the given figure, if $\mathrm{AB} \| \mathrm{CD}$,

$$
\angle A P Q=50^{\circ} \text { and } \angle P R D=127^{\circ} \text {, find } \mathrm{x} \text { and } \mathrm{y} .
$$

Ans. We are given that $A B \| C D, \quad \angle A P Q=50^{\circ}$ and $\angle P R D=127^{\circ}$.
We need to find the value of x and y in the figure.
$\angle A P Q=x=50^{\circ}$. (Alternate interior angles)
(Alternate interior angles)
$\angle A P R=\angle Q P R+\angle A P Q$.
$127^{\circ}=y+50^{\circ} \Rightarrow y=77^{\circ}$.
Therefore, we can conclude that $x=50^{\circ}$ and $y=77^{\circ}$.
(ii) In the given figure, $P Q$ and $R S$ are two mirrors placed parallel to each other. An incident ray $A B$ strikes the mirror $P Q$ at B, the reflected ray moves along the path $B C$ and strikes the mirror RS at C and again reflects back along CD. Prove that $A B \| C D$.

Ans. We are given that $P Q$ and $R S$ are two mirrors that are parallel to each other.

We need to prove that $A B \| C D$ in the figure.
Let us draw lines $B X$ and $C Y$ that are parallel to each other, to get $A B \| C D$ we know that according to the laws of reflection

$$
\angle A B X=\angle C B X_{\text {and }} \angle B C Y=\angle D C Y \text {. }
$$

$\angle B C Y=\angle C B X$ (Alternate interior angles)
We can conclude that $\angle A B X=\angle C B X=\angle B C Y=\angle D C Y$.
From the figure, we can conclude that
and

Therefore, we can conclude that $\angle A B C=\angle D C B$.

From the figure, we can conclude that $\angle A B C$ and $\angle D C B$ form a pair of alternate interior angles corresponding to the lines $A B$ and $C D$, and transversal $B C$.

Therefore, we can conclude that $A B \| C D$.

CHAPTER 6

Lines and Angles

(Ex. 6.3)

1. In the given figure, sides $Q P$ and $R Q$ of $\triangle P Q R$ are produced to points S and T respectively. If $\angle \mathbf{S P R}=\mathbf{1 3 5}{ }^{\circ}$ and $\angle \mathbf{P Q T}=\mathbf{1 1 0}$, find $\angle \mathbf{P R Q}$.

Ans. We are given that $\angle S P R=135^{\circ}$ and $\angle P Q T=110^{\circ}$. We know that the sum of angles of a linear pair is 180°
$\angle S P R+\angle R P Q=180^{\circ}, \quad$ (Linear Pair axiom)
and $\angle P Q T+\angle P Q R=180^{\circ}$. (Linear Pair axiom)
$135^{\circ}+\angle R P Q=180^{\circ}$, and $110^{\circ}+\angle P Q R=180^{\circ}$,
Or, $\angle R P Q=45^{\circ}$, and $\angle P Q R=70^{\circ}$.
From the figure, we can conclude that
$\angle P Q R+\angle R P Q+\angle P R Q=180^{\circ}$. (Angle sum property)
$\Rightarrow 70^{\circ}+45^{\circ}+\angle P R Q=180^{\circ} \Rightarrow 115^{\circ}+\angle P R Q=180^{\circ}$
$\Rightarrow \angle P R Q=65^{\circ}$.
Therefore, we can conclude that $\angle P R Q=65^{\circ}$.
2. In the given figure, $\angle \mathbf{X}=62^{\circ}, \angle \mathbf{X Y Z}=54^{\circ}$. If $\mathbf{Y O}$ and $\mathbf{Z O}$ are the bisectors of $\angle \mathbf{X Y Z}$ and $\angle \mathrm{XZY}$ respectively of $\triangle \mathrm{XYZ}$, find $\angle \mathrm{OZY}$ and $\angle \mathrm{YOZ}$.

Ans. We are given that $\quad \angle X=62^{\circ}, \angle X Y Z=54^{\circ}$ and $Y O$ and $Z O$ are bisectors of $\angle X Y Z$ and $\angle X Z Y$, respectively.

We need to find $\angle O Z Y$ and $\angle Y O Z$ in the figure.
From the figure, we can conclude that in $\triangle X Y Z$
$\angle X+\angle X Y Z+\angle X Z Y=180^{\circ} \cdot$ (Angle sum property)
$\Rightarrow 62^{\circ}+54^{\circ}+\angle X Z Y=180^{\circ} \Rightarrow 116^{\circ}+\angle X Z Y=180^{\circ}$
$\Rightarrow \angle X Z Y=64^{\circ}$.
We are given that $O Y$ and $O Z$ are the bisectors of $\angle X Y Z$ and $\angle X Z Y$, respectively. $\angle X$ $Y O=\angle Z Y O=\underline{54}=27_{2}^{\circ}$ and $\angle O Z Y=\angle X Z O=\underline{64}=32^{\circ}{ }^{\circ}$

From the figure, we can conclude that in $\triangle O Y Z$
$\angle O Y Z+\angle O Z Y+\angle Y O Z=180^{\circ}$ (Angle sum property)
$27^{\circ}+32^{\circ}+\angle Y O Z=180^{\circ}$
$\Rightarrow 59^{\circ}+\angle Y O Z=180^{\circ}$
$\Rightarrow \angle Y O Z=121^{\circ}$.
Therefore, we can conclude that $\angle Y O Z=121^{\circ}$ and $\angle O Z Y=32^{\circ}$.
3. In the given figure, if $\mathrm{AB} \| \mathrm{DE}, \angle \mathrm{BAC}=\mathbf{3 5}^{\circ}$ and $\angle \mathbf{C D E}=53^{\circ}$, find $\angle \mathrm{DCE}$.

Ans. We are given that $A B \| D E, \angle B A C=35^{\circ}$ and $\angle C D E=53^{\circ}$
We need to find the value of $\angle D C E$ in the figure given below.
From the figure, we can conclude that
$\angle B A C=\angle C E D=35^{\circ}$ (Alternate interior)
From the figure, we can conclude that in $\triangle D C E$
$\angle D C E+\angle C E D+\angle C D E=180^{\circ}$ (Angle sum property)
$\angle D C E+35^{\circ}+53^{\circ}=180$
$\Rightarrow \angle D C E+88^{\circ}=180^{\circ}$
$\Rightarrow \angle D C E=92^{\circ}$.
Therefore, we can conclude that $\angle D C E=92^{\circ}$.
4. In the given figure, if lines $\mathbf{P Q}$ and RS intersect at point T , such that $\angle \mathbf{P R T}=\mathbf{4 0} 0^{\circ}, \angle$ $\mathbf{R P T}=95^{\circ}$ and $\angle \mathbf{T S Q}=\mathbf{7 5}$, find $\angle \mathbf{S Q T}$.

Ans. We are given that

$$
\angle P R T=40^{\circ}, \angle R P T=95^{\circ} \text { and } \angle T S Q=75^{\circ}
$$

We need to find the value of $\angle S Q T$ in the figure.
From the figure, we can conclude that in $\triangle R T P$
$\angle P R T+\angle R T P+\angle R P T=180^{\circ}$ (Angle sum property)
$40^{\circ}+\angle R T P+95^{\circ}=180^{\circ}$
$\Rightarrow \angle R T P+135^{\circ}=180^{\circ}$
$\Rightarrow \angle R T P=45^{\circ}$.
From the figure, we can conclude that

$$
\angle R T P=\angle S T Q=45^{\circ} \text { (Vertically opposite angles) }
$$

From the figure, we can conclude that in $\triangle S T Q$
$\angle S Q T+\angle S T Q+\angle T S Q=180^{\circ}$ (Angle sum property)
$\angle S Q T+45^{\circ}+75^{\circ}=180^{\circ} \Rightarrow \angle S Q T+120^{\circ}=180^{\circ}$
$\Rightarrow \angle S Q T=60^{\circ}$.
Therefore, we can conclude that $\angle S Q T=60^{\circ}$.
(ii) In the given figure, if $P Q \perp P S, \mathbf{P Q} \| \mathbf{S R}, \angle S Q R=28^{\circ}$ and $\angle Q R T=65^{\circ}$, then find the values of x and y.

Ans. We are given that $\quad P Q \perp P S, P Q \| S R, \angle S Q R=28^{\circ}$ and $\angle Q R T=65^{\circ}$.
We need to find the values of x and y in the figure.

We know that "If a side of a triangle is produced, then the exterior angle so formed is equal to the sum of the two interior opposite angles."

From the figure, we can conclude that
$\angle S Q R+\angle Q S R=\angle Q R T$, or
$28^{\circ}+\angle Q S R=65^{\circ}$
$\Rightarrow \angle Q S R=37^{\circ}$
From the figure, we can conclude that

$$
x=\angle Q S R=37^{\circ} \text { (Alternate interior angles) From }
$$

the figure, we can conclude that $\triangle P Q S$
$\angle P Q S+\angle Q S P+\angle Q P S=180^{\circ}$ (Angle sum property)
$\angle Q P S=90^{\circ} \quad(P Q \perp P S)$
$x+y+90^{\circ}=180^{\circ}$
$\Rightarrow y+37^{\circ}+90^{\circ}=180^{\circ}$
$\Rightarrow y+127^{\circ}=180^{\circ} \Rightarrow y=53^{\circ}$
Therefore, we can conclude that $x=37^{\circ} y=53^{\circ}$
6. In the given figure, the side QR of $\triangle \mathrm{PQR}$ is produced to a point S . If the bisectors of $\angle P Q R$ and $\angle P R S$ meet at point T, then prove that $\quad \angle Q T R=\frac{1}{2} \angle Q P R$.

Ans. We need to prove that $\quad \angle Q T R=\frac{1}{2} \angle Q P R$ in the figure given below.
We know that "If a side of a triangle is produced, then the exterior angle so formed is equal to the sum of the two interior opposite angles."

From the figure, we can conclude that in $\triangle Q T R, \angle T R S$ is an exterior angle

$$
\angle Q T R+\angle T Q R=\angle T R S, \text { or }
$$

$$
\begin{equation*}
\angle Q T R=\angle T R S-\angle T Q R \tag{i}
\end{equation*}
$$

From the figure, we can conclude that in $\Delta P Q R, \angle P R S$ is an exterior angle $\angle Q P R+\angle P Q R=\angle P R S$.

We are given that $Q T$ and $R T$ are angle bisectors of $\angle P Q R$ and $\angle P R S$.
$\angle Q P R+2 \angle T Q R=2 \angle T R S$
$\angle Q P R=2(\angle T R S-\angle T Q R)$.

We need to substitute equation (i) in the above equation, to get
$\angle Q P R=2 \angle Q T R$, or
$\angle Q T R=\frac{1}{2} \angle Q P R$.

Therefore, we can conclude that the desired result is proved.

WORK - SHEET

CHAPTER - 6

LINES AND ANGLE

*SOLVE

1. If angle is such that six times its compliment is 12° less than twice its supplement, then the value of angle is
a. 38°
b. 48°
c. 58°
d. 68°
2. If angles measures X and Y form a complimentary pair , then which of the following measures of angle will form a supplementary pair?
a. $\left(x+47^{\circ}\right),\left(y+43^{\circ}\right)$
b. $\left(x-23^{\circ}\right),\left(y+23^{\circ}\right)$
c. $\left(x-47^{\circ}\right),\left(y-43^{\circ}\right)$
d. No such pair is possible.
3. If one angle of a triangle is equal to the sum of the other two angles, then the triangle is.
a. An isosceles triangle
b. An obtuse triangle
c. An equilateral triangle
d. A right triangle
4. An exterior angle of a triangle is 105° and its two interior opposite angles are equal. Each of these equal angles is.
a. $37 \frac{1}{1} 2^{\circ}$
b. $52 \frac{1}{2} 2^{\circ}$
c. $721^{1} 2^{\circ}$ d. 75°
5. Sides QP and RQ of triangle PQR are produced to point S and T respectively if angle $\mathrm{SPR}=135^{\circ}$ and angle $\mathrm{PQT}=110^{\circ}$ find angle PRQ

a. 35°
b. 45°
c. 55°
d. 65°
6. In the figure, POQ is a line. The value of x is.

a. 20°
b. 25°
c. 30°
d. 35°
7. In the figure, if $\mathrm{OP} \| \mathrm{DE}$, then the value of $\angle \mathrm{BCD}$ is

a. 30°
b. 45°
c. 55°
d. 65°
8. In the figure if $\mathrm{OP} \| \mathrm{RS}, \angle \mathrm{OPQ}=110^{\circ}$ and $\angle \mathrm{QRS}=130^{\circ}$, then $\angle \mathrm{PQR}$ is equal to.

a. 40°
b. 50°
c. 60°
d. 70°
9. If one of a triangle is equal to the sum of the other two, then triangle is a / an
a. Acute angle triangle
b. Obtuse angle triangle
c. Right angle triangle
d. None of these
10. In the given figure, lines AB and CD intersect at O . If $\angle \mathrm{AOC}+\angle \mathrm{BOE}=80^{\circ}$ and $\angle \mathrm{BOD}=30^{\circ}$, then \angle BOE equals to

a. 30°
b. 40°
b.
c. 50°
d. 60°

*SOLVE

11. In the given figure, find the values of x and y and then show that $A B \| C D$.

12. In the given figure, if $A B\|C D, C D\| E F$ and $y: z=3: 7$, find x.

13. As per given figure, $A B \| D C$ and $A D \| B C$. Prove that $\angle D A B=\angle D C B$.

